Home Search Collections Journals About Contact us My IOPscience

Preparation and enhancement of critical current density in MgB_2 wires and tapes

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys.: Condens. Matter 16 1803 (http://iopscience.iop.org/0953-8984/16/10/012) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 12:50

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 16 (2004) 1803-1811

Preparation and enhancement of critical current density in MgB₂ wires and tapes

Y Feng¹, G Yan¹, Y Zhao², C F Liu¹, X H Liu¹, P X Zhang¹, L Zhou¹, A Sulpice³, E Mossang³ and B Hebral³

 ¹ Northwest Institute for Nonferrous Metal Research, PO Box 51, Xi'an 710016, People's Republic of China
 ² School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
 ³ CRTBT and LCMI, CNRS, BP166, 38042 Grenoble Cedex 9, France

E-mail: yfeng@c-nin.com

Received 23 October 2003

Published 27 February 2004 Online at stacks.iop.org/JPhysCM/16/1803 (DOI: 10.1088/0953-8984/16/10/012)

Abstract

We have successfully prepared monofilamentary MgB₂ wires and tapes with different sheathed metals such as Cu, Ta/Cu and Fe by the powderin-tube method. The phase composition, superconducting properties and microstructure features are investigated by x-ray diffractometer, the standard four-probe technique, SQUID magnetometer, SEM and TEM. The results indicate that J_c in MgB₂/Ta/Cu wires is higher than 10⁵ A cm⁻² at 5 K in 0.1 T and 10⁴ A cm⁻² at 20 K in 1 T. By Ti-doping, J_c can be significantly improved. MgB₂/Fe wires show very high transport critical current densities of 1.43 × 10⁵ A cm⁻² (4.2 K, 4 T), 3.72 × 10⁴ A cm⁻² (15 K, 4 T) and 2.34 × 10⁴ A cm⁻² (25 K, 3 T). Also the results indicated that small grain size should respond to the large J_c in Ti-doped MgB₂ tape and MgB₂/Fe wire.

1. Introduction

The discovery of superconductivity at 39 K in MgB₂ by Nagamatsu *et al* [1] has generated a great deal of excitement in both the fundamental and practical investigations of this material. The transition temperature T_c of MgB₂ is much higher than Nb₃Ge (by almost a factor of 2) having the highest T_c in conventional superconductors. The advantage of MgB₂ is its applications in the higher temperature (20–30 K) region, where conventional superconductors cannot play any role due to their low T_c . Also, the progress in cryogen free cooling techniques in the temperature region 20–30 K promotes the development and application of MgB₂. Some investigations, including the observation of the isotope effect, band structure and tunnelling measurements of the superconducting gap, suggest that MgB₂ is a conventional phononmediated BCS superconductor [2–4]. In contrast to the BCS theory, another model was proposed to explain superconductivity in MgB₂ by the pairing of dressed holes [5].

On the other hand, it is found that supercurrent flow in MgB₂ bulk material is not reduced by grain boundaries [6], which are well known in high- T_c ceramic superconductors. As revealed by the irreversible magnetization experiment [7], the behaviour of the magnetic hysteresis loops of MgB₂ is dominated by bulk pinning. Furthermore, measurements of $H_{c2}(T)$, the dynamics critical field and J_c , suggest that MgB₂ is a typical type-II superconductor, similar to Nb₃Sn except for the extremely high T_c [8, 9]. In addition, it is reported that the grain boundaries may be the main source of vortex pinning in MgB₂, as in Nb₃Sn [10]. The recent investigation of MgB₂ wire under different heat treatments indicates that MgB₂ bulk samples fabricated by the solid-state reaction method contain many small $Mg(B, O)_2$ precipitates within the MgB_2 matrix, which are suitable as pinning centres [11]. For the electrical application of superconductors, high critical current density is required. Therefore, much work has been carried out to improve the superconducting characteristics of MgB₂ in its various shapes, either bulk, thin film or wire. Just recently, a very high J_c of 1.2×10^7 A cm⁻² at 4.2 K in zero-field was obtained in the in situ epitaxial MgB₂ thin film, suggesting that MgB₂ can reach extremely high intrinsic J_c [12]. However, J_c of MgB₂ wires and tapes, especially in high fields, is very low. Canfield *et al* fabricated high-density MgB₂ wires (160 μ m in diameter) through the exposure of boron filaments to Mg vapour [13]. Also, recent reports on the preparation of MgB₂ wires by powder-in-tube (PIT) using either Ag or Cu sheath and MgB₂ strands, by filling Nb-lined monel tubes with commercial MgB₂ powders, were the first steps to putting MgB₂ superconductors into applications [14]. By using Cu as a sheath, transport J_c of 50000 A cm⁻² at 15 K in self-field was obtained in MgB2 wires. For the non-sintered MgB2/Ni tape, Jc reached around 10⁵ A cm⁻² at 4.2 K in self-field [15]. Recently, Wang et al [16] reported their results on a Fe-clad MgB₂ wire, in which J_c achieved 4.2×10^5 A cm⁻² at 4.2 K in self-field. J_c is further improved to 1.7×10^4 A cm⁻² in 1 T at 29.5 and 33 K in self-field [17]. Also, transport J_c of 8700 and 55 830 A cm⁻² at 4.2 K in self-field were measured for Cu and Fe/Cu sheathed MgB₂ square wires by using commercial MgB₂ powder [18]. To date, two important factors of low density and poor flux pinning are the main obstacles to obtaining J_c in MgB₂ samples. In this paper, a series of MgB₂ wires and tapes was successfully fabricated by the powderin-tube method. Phase composition, superconducting properties and microstructure features were investigated.

2. Experimental details

Single filamentary MgB₂ composite wires and tapes with and without Ti-doping were prepared by the *in situ* powder-in-tube process. Mg (or Ti) powder and amorphous B powder were used as starting materials in an atomic ratio of Mg (or Ti):B = 1(99%):(1%):2. 5% extra Mg was added to compensate the loss of magnesium in high temperature. The mixture of these powders was well ground and filled into an iron, tantalum or copper tube of 6 mm in diameter. The composite tube was swaged and drawn down to a wire of 2.0 mm in diameter with an intermediate annealing (400–450 °C). For tapes, the wires were rolled to the dimension of 3.4 mm × 0.25 mm. Finally, the wires and tapes were sintered at 600–900 °C for 2 h in argon at ambient pressure.

The phase composition was analysed by x-ray diffraction measurements. The microstructure features of these wires and tapes were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The TEM sample was obtained by mechanically grinding the MgB₂ samples to a thickness of about 40 μ m and further thinning them using the polishing system. The current–voltage characteristics of the wires were measured at various fields and temperatures by the standard four probe method. The field is perpendicular to the current and the criterion used to determine critical current is 1 μ V cm⁻¹.

Figure 1. Field dependent critical current density of MgB₂/Ta/Cu wires at 5, 10, 15, 20, 25, 30, 32 and 35 K. J_c is about 10⁵ A cm⁻² at 5 K in 0.1 T. Inset: field dependence of magnetic J_c for MgB₂/Cu wire.

The magnetization measurements were performed on a commercial superconducting quantum interference device (SQUID) magnetometer at different temperatures in a magnetic field up to 7 T.

3. Results and discussion

The deduced J_c of MgB₂/Ta/Cu wire from the hysteresis loops, by using the Bean model, according to relation $J_c = 30\Delta M/d$ (where d is the diameter of the sample), is shown in figure 1. It is interesting to note that J_c at low temperatures (from 5 to 15 K) and low fields are very close, which is quite different from high- T_c ceramic superconductors. A similar feature has been found in the high-pressure sample [19]. At 5 K in 0.1 T, the J_c of our wire has reached a value around 10⁵ A cm⁻². The J_c also achieves 10⁴ A cm⁻² at 20 K and 1 T, which is comparable to the high-pressure sample. However, it can be seen from the inset of figure 1 that J_c is much lower in MgB₂/Cu wire than that in MgB₂/Ta/Cu wire, which should be related to the serious reaction between MgB₂ and Cu.

As reported by our previous work, Ta is a good candidate for the buffer layer for preparing MgB_2 wires. Figure 2 illustrates the TEM image of the interfaces between MgB_2 grains and Ta. There is no reaction between them. By EDAX analysis, some MgO particles are found as marked as 1, 2, 3 and 4 in this sample. Also, the size of these particles is very small, less than 50 nm. However, a serious reaction of Mg and Cu is observed in the MgB₂/Cu wires without a Ta buffer layer. A MgCu₂ compound is formed within the MgB₂ core/Cu-sheath interface, which leads to a big reduction in J_c as shown in the inset of figure 1. A similar result was also reported in [14]. Furthermore, typical TEM images for the MgB₂/Cu wires with and without a Ta buffer layer are shown in figure 3. The MgB₂/Cu sample has the smaller and more homogenous MgB₂ grains, while the superconducting grains are larger in MgB₂/Ta/Cu wire. As observed by Gumbel *et al* [10], the grain boundary pinning is very effective in

Figure 2. TEM image of the interface between MgB₂ grains and Ta for MgB₂/Ta/Cu.

Figure 3. Typical TEM images for MgB₂/Cu wires with (a) and without (b) Ta.

 MgB_2 superconductors. The smaller grains should result in the enhancement of flux pinning. However, the serious reaction between Cu sheath and MgB_2 and the lower T_c with broader transition lead to a decrease in J_c for MgB_2/Cu wires.

Typical x-ray diffraction patterns of pure MgB_2 and Ti-doped tapes are illustrated in figure 4. It can be observed that the main phase is MgB_2 in the pure MgB_2 sample while only few impurity phases of MgO are found in the spectrum. However, some TiB₂ phases and fewer MgO can be detected besides the MgB_2 phase in the Ti-doped sample. The XRD analysis shows that the lattice parameters are not changed by Ti-doping, suggesting that Ti atoms do not enter the structure of MgB_2 . The critical temperature (38 K) of the Ti-doped sample is slightly lower than that of pure MgB_2 (38.4 K).

Figure 5 shows the magnetic field dependence of J_c for the MgB₂/Ta/Cu tapes with and without Ti-doping at different temperatures. The J_c values were deduced from the hysteresis loops by using the Bean model of $J_c = 30\Delta M/d$ (where *d* is the diameter of the sample). In this figure, the symbols present the experiment data and the lines are the fitting curves of the equation $J_c(B) = J_c(0) \exp(-(B/B_0)^{0.65})$. It can be observed that the J_c value is significantly

Figure 4. X-ray diffraction patterns of MgB_2 tape with and without Ti-doping. Few impurity phases of MgO are found in both tapes. TiB₂ phases are found in Ti-doped tape.

Figure 5. Field dependence of magnetic J_c for MgB₂/Ta/Cu tape with and without Ti-doping at different temperatures. Fitting curves of the equation $J_c(B) = J_c(0) \exp(-(B/B_0)^{0.65})$ are also shown.

improved by Ti-doping in the MgB₂ tape. At 10 K and self-field, the J_c of the Ti-doped tape reaches a high value above 1.5×10^6 A cm⁻². As the magnetic field is increased to 1 T, J_c is as high as 2.7×10^5 A cm⁻². However, J_c is only around 1.9×10^4 A cm⁻² at 10 K in 1 T for pure MgB₂ tape. In addition, a plateau region of J_c can be observed from figure 5 at low magnetic fields. At this stage, J_c has a weak dependence on the field. But when the magnetic field is increased above a crossover field B_{sb} , J_c begins to decrease quickly. Also, the crossover field decreases with increasing temperature. The crossover field of Ti-doping MgB₂ tapes is relatively high compared to pure MgB₂, which indicates that the Mg_{0.9}Ti_{0.1}B₂ sample has a very strong flux pinning ability.

Figure 6. Typical SEM photography for the MgB₂ tape with (a) and without (b) Ti-doping.

A typical SEM photograph of the cross section in pure MgB_2 and $Mg_{0.9}Ti_{0.1}B_2$ tapes are given in figure 6. More voids formed by the evaporation of Mg can be observed in the pure MgB_2 . However, the $Mg_{0.9}Ti_{0.1}B_2$ sample has a much higher density with few voids. In fact, with Ti-doping, the temperature for forming the MgB_2 phase is higher than pure MgB_2 . Also, the connections between grains are much improved and the fine grains of MgB_2 are found in the Ti-doped tape. A very thin layer of TiB₂ forms around the MgB_2 particles and MgO nanoparticles are observed in Ti-doped MgB_2 samples [20]. Therefore, it can be concluded that the TiB₂ phases in the tapes may prevent the growth of grain size of MgB_2 and lead to the very fine MgB_2 particles. Meanwhile, the fine grain size creates many grain boundaries, which may act as the important pinning centres in MgB_2 material and enhances the critical current density of MgB_2 .

Figure 7 shows the J_c values as a function of field at 4.2 K for the MgB₂/Fe wires prepared at various temperatures. It is noticed that J_c is very high especially in high fields and $J_{\rm c}$ exhibits different behaviours in field for these samples. The sample fabricated at 850 °C has the maximum J_c at fields below 4 T, while J_c of the sample prepared at 750 °C is the highest among them in the fields above 4 T. For the sample at 750 °C, J_c is as high as 4.4×10^4 and 6560 A cm⁻² even at 6 and 10 T, which is the best data reported for PIT wires and tapes. At 1 T, all the samples have large J_c values above 2.0×10^5 A cm⁻² with the highest J_c around 3.2×10^5 A cm⁻². Also, in the field range of 4–7 T, the J_c values for all samples are higher than 1.6×10^4 A cm⁻². The high J_c in our samples may be due to good grain connectivity and strong flux pinning force. By computer fitting, it is found that J_c decreases exponentially with the field as shown in the inset of figure 7. In addition, the field dependence of transport J_c values at 15 and 25 K is given in figure 8. The MgB₂/Fe wire shows the high irreversibility field and excellent performance in high field and high temperature. At 15 K, the sample has a J_c value of 3.72×10^4 A cm⁻² in 4 T. Also, it should be noted that J_c reaches 2.34×10^4 A cm⁻² even at 25 K in 3 T for the sample. These J_c data are much higher than the best results on undoped MgB_2 wires and tapes and even on the bulk samples [21].

It is well known that critical current density is controlled by the flux pinning characteristics of superconductors. A lot of crystal defects with suitable dimensions are the candidates for the flux pinning centres. To date, the grain boundary, fine second-phase particles, nano-MgO particles and dislocations are proposed to be effective pinning centres in MgB₂. In order to explore the mechanism of high J_c in high fields for MgB₂/Fe wires, the microstructure features of the samples were examined by SEM and TEM. As mentioned above, the MgB₂/Fe

Figure 7. Field dependence of transport J_c at 4.2 K for MgB₂/Fe wires prepared at different temperatures.

Figure 8. Transport J_c as a function of field at 15 and 25 K for MgB₂/Fe wires prepared at 750 °C. Note that J_c is very high around 2.34×10^4 A cm⁻² at 25 K in 3 T.

wire shows excellent flux pinning, especially in high fields, which should be related to the modification of the microstructure. Figure 9 shows a TEM image of the MgB₂/Fe wires treated at 750 °C. Note that the grain size in the sample is small, around 200–500 nm, which is beneficial for the enhancement of grain boundary pinning. In addition, neither voids or MgO are found at MgB₂ grain boundaries. However, it is interesting to note that some precipitates with size less than 60 nm can be seen in the MgB₂ matrix. These precipitates appear darker than the MgB₂ matrix. By using x-ray energy dispersive spectroscopy, these particles are identified to be iron. As reported by other authors, the precipitates can be the candidates for the flux pinning centres [22]. Furthermore, the electron diffraction pattern for MgB₂/Fe is shown in

Figure 9. Typical TEM image of MgB2/Fe wires, showing small grains and fine precipitates.

Figure 10. Electron diffraction pattern for MgB₂/Fe wire.

figure 10. The spots are consistent with MgB₂ and the shape of the spots implies that many crystal defects exist in this sample, which will contribute to the flux pinning. In other reports, a number of dislocations are observed in hot isostatic pressed samples and SiC-doped samples, leading to an improvement of J_c in MgB₂ bulk samples. As discussed above, the combination effects of high density, small grains, precipitates and many crystal defects may be responsible for the high J_c and large irreversibility field. However, the MgB₂/Fe wire has a low density as compared to the high quality bulk samples. Therefore, we can expect that J_c can be further improved by increasing the density of the sample and introducing strong pinning centres.

4. Conclusion

We have successfully prepared dense single filamentary MgB₂/Ta/Cu wires and tapes with and without Ti-doping and MgB₂/Fe wires by the powder-in-tube technique. It is found that Cu has a serious reaction with MgB₂. By using Ta as a buffer layer, this reaction can be greatly suppressed. J_c in MgB₂/Ta/Cu wires is higher than 10⁵ A cm⁻² at 5 K in 0.1 T and 10⁴ A cm⁻² at 20 K in 1 T. Furthermore, J_c value is significantly increased to 1.5×10^6 A cm⁻² at 10 K in self-field and 2.7×10^5 A cm⁻² at 10 K in 1 T by Ti-doping, which may be due to the high density, fine MgB₂ particles and thin layer of TiB₂ in Ti-doped MgB₂/Ta/Cu tapes. Interestingly, MgB₂/Fe wires exhibit very high transport critical current densities at high temperatures and high fields. J_c values achieve as high as 1.43×10^5 A cm⁻² (4.2 K, 4 T), 3.72×10^4 A cm⁻² (15 K, 4 T) and 2.34×10^4 A cm⁻² (25 K, 3 T). The small grains, fine precipitates and many crystal defects in the MgB₂/Fe wires may be responsible for the high J_c and large irreversibility field.

Acknowledgments

This work was supported by National '863' project of China and National Natural Science Foundation of China under Contract No 50172040.

References

- [1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
- [2] Bud'ko S L, Lapertot G, Petrovic C, Cunningham C E, Anderson N and Canfield P C 2001 Phys. Rev. Lett. 86 1877
- [3] Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L 2001 Phys. Rev. Lett. 86 4656
- [4] Sharoni A, Felner I and Millo O 2001 Phys. Rev. B 63 220508
- [5] Hirsch J E 2001 Phys. Lett. A 282 392
- [6] Larbarlestier D C, Rikel M O, Cooley L D, Polynaskil A A, Jiang J Y, Patnaik S, Cai X Y, Feldman D M, Gurevich A, Squitieri A A, Naus M T, Eom C B, Hellstrom E E, Cava R J, Regan K A, Rogado N, Hayward M A, He T, Slusky J S, Khalifah P, Inumaru K and Haas M 2001 Nature 410 186
- [7] Kim M S, Jung C U, Park M S, Lee S Y, Kim H P, Kang W N and Lee S I 2001 Phys. Rev. B 64 012511
- [8] Finnemore D K, Ostenson J E, Bud'ko S L, Lapertot G and Canfield P C 2001 Phys. Rev. Lett. 86 2420
- [9] Bugoslavsky Y, Cohen L F, Perkins G K, Polichetti M, Tate T J, Gwilliams R and Caplin A D 2001 Nature 411 561
- [10] Gumbel A, Perner O, Eckert J, Fuchs G, Nenkov K, Muller K H and Schultz L 2002 *Appl. Phys. Lett.* **80** 2725
 [11] Serquis A, Civale L, Hammon D L, Coulter J Y, Liao X Z, Zhu Y T, Peterson D G and Mueller F M 2002
- unpublished Liao X Z, Serquis A, Zhu Y T, Huang J Y, Peterson D E, Mueller F M and Xu H F 2002 Appl. Phys. Lett. 80
- 4398 [12] Zeng X H, Pogrebnyakov A L, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q,
- Lettieri J, Schlom D G, Tian W, Pan X Q and Liu A K 2002 *Nature Mater.* **1** 1
- [13] Canfield P C, Finnemore D K, Bud'ko S L, Ostenson J E, Lapertot G, Cunningham C E and Petrovic C 2001 Phys. Rev. Lett. 86 2423
- [14] Martinez E, Angurel L A and Navarro R 2002 Supercond. Sci. Technol. 15 1043
- Sumption M D, Peng X, Lee E, Tomsic M and Collings E W 2001 Preprint cond-mat/0102441
- [15] Grasso G, Malagoli A, Ferdeghini C, Roncallo S, Braccini V, Cimberle M R and Siri A S 2002 Appl. Phys. Lett. 79 230
- [16] Wang X L, Soltanian S, Horvat J, Liu A H, Qin M J, Liu H K and Dou S X 2001 Physica C 361 149
- [17] Soltanian S, Wang X L, Kusevic I, Babic E, Liu A H, Qin M J, Horvat J, Liu H K, Collings E W, Lee E, Sumption M D and Dou S X 2001 *Physica* C 361 84
- [18] Kovac P, Husek I, Pachla W, Melisek T, Diduszko R, Frohlich K, Morawski A, Presz A and Machajdik D 2002 Supercond. Sci. Technol. 15 1127
- [19] Takano Y, Takeya H, Fuji H, Kumakura H, Hatano T, Togano K, Kito H and Ihara H 2001 Appl. Phys. Lett. 78 2914
- [20] Zhao Y, Feng Y, Cheng C H, Zhou L, Wu Y, Machi T, Fudamoto Y, Koshizuka N and Murakami M 2001 Appl. Phys. Lett. 79 1154
- [21] Beneduce C et al 2002 Preprint cond-mat/0203551
- [22] Fang H, Padmanabhan S, Zhou Y X and Salama K 2003 Appl. Phys. Lett. 82 4113